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Abstract

Background: For complex financial systems, the negative and positive return-volatility correlations,
i.e., the so-called leverage and anti-leverage effects, are particularly important for the understanding of
the price dynamics. However, the microscopic origination of the leverage and anti-leverage effects is still
not understood, and how to produce these effects in agent-based modeling remains open. On the other
hand, in constructing microscopic models, it is a promising conception to determine model parameters
from empirical data rather than from statistical fitting of the results.

Methods: To study the microscopic origination of the return-volatility correlation in financial systems,
we take into account the individual and collective behaviors of investors in real markets, and construct
an agent-based model. The agents are linked with each other and trade in groups, and particularly, two
novel microscopic mechanisms, i.e., investors’ asymmetric trading and herding in bull and bear markets,
are introduced. Further, we propose effective methods to determine the key parameters in our model
from historical market data.

Results: With the model parameters determined for six representative stock-market indices in the
world respectively, we obtain the corresponding leverage or anti-leverage effect from the simulation, and
the effect is in agreement with the empirical one on amplitude and duration. At the same time, our model
produces other features of the real markets, such as the fat-tail distribution of returns and the long-term
correlation of volatilities.

Conclusions: We reveal that for the leverage and anti-leverage effects, both the investors’ asymmetric
trading and herding are essential generation mechanisms. Among the six markets, however, the investors’
trading is approximately symmetric for the five markets which exhibit the leverage effect, thus contribut-
ing very little. These two microscopic mechanisms and the methods for the determination of the key
parameters can be applied to other complex systems with similar asymmetries.

Introduction

In recent years, the understanding of complex systems has been undergoing rapid development. Financial
markets are important examples of complex systems with many-body interactions. The possibility of
accessing large amounts of historical financial data has spurred the interest of scientists in various fields,
including physics. Plenty of results have been obtained with physical concepts, methods and models
[1–13].

There are several stylized facts in financial markets. Besides the fat tail in the probability distribution
of price returns, it is well-known that the volatilities are long-range correlated in time, which is the so-
called volatility clustering [14]. However, our knowledge on the dynamics of the price itself is still limited.
Since the auto-correlation of returns is extremely weak [2, 3], nonzero higher-order time correlations
become important, especially the lowest-order one among them. In financial markets, this lowest-order
nonzero correlation turns out to be the return-volatility correlation, on which we lay emphasis in this
paper. In 1976, a negative return-volatility correlation is first discovered by Black [15]. This is the so-
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called leverage effect, which implies that past negative returns increase future volatilities. The leverage
effect is actually observed in various financial systems, such as stock markets, futures markets, bank
interest rates and foreign exchange rates [6, 15–21]. We have studied about thirty stock-market indices,
and all of them exhibit the leverage effect. To the best of our knowledge, the leverage effect exists in
almost all stock markets in the world. In Chinese stock markets, however, a positive return-volatility
correlation is detected, which is called the anti-leverage effect [6,19]. This effect is also observed in other
economic systems, such as bank interest rates of early years and spot markets of non-ferrous metals.

The leverage and anti-leverage effects are crucial for the understanding of the price dynamics [6,15,19,
20], and important for risk management and optimal portfolio choice [22,23]. However, the origination of
the return-volatility correlation is still disputed, even at the macroscopic level [19,20,24–29]. According to
Black, the leverage effect arises because a price drop increases the risk of a company to go bankrupt and
leads the stock to fluctuate more. So far, various macroscopic models have been proposed to understand
the return-volatility correlation [4,19,30–33]. The retarded volatility model is an enlightening one, which
can produce both the leverage and anti-leverage effects [4]. However, it is a model with only one degree
of freedom, and both the initial time series of returns and the function of the feedback return-volatility
interaction, are actually input. Hence, the model is phenomenological in essence, and the generation
mechanism of the leverage and anti-leverage effects is macroscopic. In very recent years, many researches
have been devoted to the return-volatility correlation, but how to produce the return-volatility correlation
with a microscopic model remains open.

Agent-based modeling is a powerful simulation technique, which is widely applied in various fields
[34–41]. More recently, an agent-based model is proposed for reproducing the cumulative distribution
of empirical returns and trades in stock markets [41]. It is a outstanding model with key parameters
determined from empirical findings rather than from being set artificially. In this paper, we construct
an agent-based model with asymmetric trading and herding to explore the microscopic origination of the
leverage and anti-leverage effects. In the past decades, although the asymmetric trading and herding
behaviors may have been touched macroscopically, they have not been taken into account in the micro-
scopic modeling yet. Especially, we propose effective methods to determine the key parameters in our
model from historical market data.

Methods

To study the microscopic origination of the return-volatility correlation in stock markets, we take into
account the individual and collective behaviors of investors, and construct a microscopic model with
multi-agent interactions. Further, we determine the key parameters in our model from historical market
data rather than from statistical fitting of the results.

Our model is basically built on agents’ daily trading, i.e., buying, selling and holding stocks. Empirical
studies indicate that investors make decisions according to the previous stock performance of different time
windows [42], which suggests that their horizons of investment vary. This investment horizon is introduced
to our model for a better description of agents’ market behavior. Most crucially, two important behaviors
of investors are taken into account for understanding the return-volatility correlation.

1. Two important behaviors of investors
(a) Investors’ asymmetric trading in bull and bear markets. There are various definitions of bull and

bear markets [43,44]. The usual definition is that in stock markets, bull and bear markets correspond to
the periods of generally increasing and decreasing stock prices respectively [43]. In this paper we adopt
this definition, and simply define a market to be bullish on one day if the price return is positive, and
bearish if the price return is negative. The asymmetric trading in bull and bear markets is an individual
behavior, which is induced by investors’ different trading desire when the price drops and rises. To be
more specific, an investor’s willingness to trade is affected by the previous price returns, leading the
trading probability to be distinct in bull and bear markets.
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(b) Investors’ asymmetric herding in bull and bear markets. Herding, as one of the collective behaviors,
is that investors cluster in groups when making decisions, and these groups can be large in financial
markets [45–51]. Actually, the herding behavior in bull markets is not the same as that in bear ones
[47,52,53]. For instance, previous study has shown that in the recent US market, the herding behavior in
bear markets appears much more significant than that in bull ones [47]. Generally, investors may cluster
more intensively in either bull or bear markets, leading the herding to be asymmetric.

2. Microscopic model with multi-agent interactions
The stock price on day t is denoted as Y (t), and the logarithmic price return isR(t) = ln[Y (t)/Y (t−1)].

In stock markets, the information for investors is highly incomplete, therefore an agent’s decision of buy,
sell or hold is assumed to be random. Since intraday trading is not persistent in empirical trading
data [54], we consider that only one trading decision is made by each agent in a single day. In our model,
there are N agents, and each operates one share every day. On day t, each agent i makes a trading
decision Si(t),

Si(t) =


1 buy

−1 sell

0 hold

, (1)

and the probabilities of buy, sell and hold decisions are denoted as Pbuy(t), Psell(t) and Phold(t), respec-
tively. The price return R(t) in our model is defined by the difference of the demand and supply of the
stock, i.e., the difference between the number of buy agents and sell ones,

R(t) =

N∑
i=1

Si(t). (2)

The volatility is defined as the absolute return |R(t)|.
The investment horizon is introduced since agents’ decision makings are based on the previous stock

performance of different time horizons. It has been found that the relative portion γi of agents with i days
investment horizon follows a power-law decay, γi ∝ i−η with η = 1.12 [41]. The maximum investment

horizon is denoted as M , thus imax = M . With the condition of
∑M
i=1 γi = 1, we normalize γi to be

γi = i−η/
∑M
i=1 i

−η. Agents’ trading decisions are made according to the previous price returns. For

an agent having investment horizon of i days,
∑i−1
j=0R(t− j) represents a simplified investment basis for

decision making on day t + 1. We introduce a weighted average return R′(t) to describe the integrated

investment basis of all agents. Taking into account that γi is the weight of
∑i−1
j=0R(t− j), R′(t) is defined

as

R′(t) = k ·
M∑
i=1

γi i−1∑
j=0

R(t− j)

 , (3)

where k is a proportional coefficient. We set k = 1/(
∑M
i=1

∑M
j=i γj), such that |R′(t)|max = N = |R(t)|max

to ensure that the fluctuation scale of R′(t) remains consistent with the one of R(t) (see Appendix S1). If
M = 1, R′(t) is just identical to R(t). Actually, M varies from market to market, and from time period
to time period for a market. According to Ref. [42], the investment horizons of investors range from a
few days to several months. We estimate the maximum investment horizon M to be 150 in our model.
For M between 50 and 500, the simulated results remain qualitatively robust.

(i) Asymmetric trading. In Ref. [41], investors’ probabilities of buy and sell are assumed to be
equal, i.e., Pbuy = Psell = p, and p is a constant. In our model, we adopt the value of p estimated
in Ref. [41], p = 0.0154. We assume Pbuy(t) = Psell(t) as well, but now Pbuy(t) and Psell(t) evolve
with time since the agents’ trading is asymmetric in bull and bear markets. As the trading probability
Ptrade(t) = Pbuy(t) + Psell(t), we set its average over time 〈Ptrade(t)〉 = 2p. From the investors’ behavior
(a) described in Subsec. 1 in Sect. Methods, we define the market performance of the previous M days
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to be bullish if R′(t) > 0, and bearish if R′(t) < 0. The investors’ asymmetric trading in bull and
bear markets gives rise to the distinction between Ptrade(t + 1)|R′(t)>0 and Ptrade(t + 1)|R′(t)<0. Thus,
Ptrade(t+ 1) should take the form

Ptrade(t+ 1) = 2p · α R′(t) > 0

Ptrade(t+ 1) = 2p R′(t) = 0

Ptrade(t+ 1) = 2p · β R′(t) < 0

. (4)

Here α and β are constants, and 〈Ptrade(t)〉 = 2p requires α+ β = 2, i.e., α and β are not independent.
(ii) Asymmetric herding. The herding behavior implies that investors can be divided into groups.

Here a herding degree D(t) is introduced to quantify the clustering degree of the herding behavior,

D(t) = nA(t)/N, (5)

where nA(t) is the average number of agents in each group on day t. Herding should be related to previous
volatilities [46,55], and we set nA(t+ 1) = |R′(t)|. Hence the herding degree on day t+ 1 is

D(t+ 1) = |R′(t)|/N. (6)

This herding degree is symmetric for R′(t) > 0 and R′(t) < 0. According to the investors’ behavior (b)
described in Subsec. 1 in Sect. Methods, however, investors’ herding behaviors in bull and bear markets
are asymmetric, i.e., herding is stronger in either bull markets or bear ones. More specifically, D(t + 1)
is not symmetric for R′(t) > 0 and R′(t) < 0, and should be redefined to be

D(t+ 1) = |R′(t)−∆R|/N. (7)

Here ∆R is the degree of asymmetry, and as ∆R grows, herding becomes more asymmetric. According
to Eq. (5), D(t + 1) = nA(t + 1)/N . Therefore N ·D(t + 1) is the average number of agents in a same
group. Thus we randomly divide N agents into 1/D(t+ 1) groups on day t+ 1. Everyday, the agents in
a group make a same trading decision (buy, sell or hold) with the same probability (Pbuy, Psell or Phold).

3. Determination of α and ∆R
This is the key step in the construction of our model. We emphasize that α and ∆R are determined

from the historical market data rather than from statistical fitting of the simulated results. Six repre-
sentative stock-market indices are studied with our model, including the S&P 500, Shanghai, Nikkei 225,
FTSE 100, Hangseng and DAX indices. We collect the daily data of closing price and trading volume,
both of which are from 1950 to 2012 with 15775 data points for the S&P 500 Index, from 1991 to 2006
with 3928 data points for the Shanghai Index, from 2003 to 2012 with 2367 data points for the Nikkei 225
Index, from 2004 to 2012 with 1801 data points for the FTSE 100 Index, from 2001 to 2012 with 2787
data points for the Hangseng Index and from 2008 to 2012 with 1016 data points for the DAX Index.
These data are obtained from ”Yahoo! Finance” (http://finance.yahoo.com). For comparison of different
time series of returns, the normalized return r(t) is introduced,

r(t) = [R(t)− 〈R(t)〉]/σ, (8)

where 〈· · · 〉 represents the average over time t, and σ =
√
〈R2(t)〉 − 〈R(t)〉2 is the standard deviation of

R(t).
The stock market is assumed to be bullish if r(t) > 0, and bearish if r(t) < 0. To determine α, we

first define an average trading volume V+ for the bull markets, and V− for the bear ones,{
V+ = [

∑
r(t)>0 V (t)]/nr(t)>0

V− = [
∑
r(t)<0 V (t)]/nr(t)<0

. (9)

http://finance.yahoo.com
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Here nr(t)>0 and nr(t)<0 represent the number of positive and negative returns respectively, and V (t) is
the trading volume on day t. As displayed in Table 1, the ratio V+/V− is 1.03 for the S&P 500 Index and
1.21 for the Shanghai Index. In our model, since the average trading volumes for bull markets (R′(t) > 0)
and bear markets (R′(t) < 0) are N · Ptrade(t+ 1)|R′(t)>0 and N · Ptrade(t+ 1)|R′(t)<0, the ratio of these
two average trading volumes is

Ptrade(t+ 1)|R′(t)>0

Ptrade(t+ 1)|R′(t)<0
= α/β = V+/V−. (10)

Together with the condition α + β = 2, we determine α = 1.01 from V+/V− for the S&P 500 Index
and α = 1.09 for the Shanghai Index. Table 1 also shows the values of V+/V− and α for the Nikkei 225,
FTSE 100, Hangseng and DAX indices. Several data series of different time periods are sampled from the
historical market data, and the error is given for α in this table. Student’s t-test is performed to analyze
the statistical significance for α deviating from 1.0, and a p-value less than 0.05 is considered statistically
significant. The analysis shows that only the value α = 1.09 of the Shanghai Index is significantly
deviating from 1.0, with the p-value = 8.4 × 10−4. In our simulation, for simplicity, we approximate α
to be 1.0 for the S&P 500, Nikkei 225, FTSE 100, Hangseng and DAX indices, and 1.1 for the Shanghai
Index.

Now we turn to ∆R. In real markets, herding is related to volatilities [46,55]. Thus we introduce the
average |r(t)| with the weight V (t) to describe the herding degree in a specific period. Thus the herding
degrees of bull markets (r(t) > 0) and bear markets (r(t) < 0) are defined as{

dbull(r(t)) =
∑
t,r(t)>0[V (t) · r(t)]/

∑
t,r(t)>0 V (t)

dbear(r(t)) =
∑
t,r(t)<0[V (t) · |r(t)|]/

∑
t,r(t)<0 V (t)

. (11)

From empirical findings, the herding degrees of bull and bear stock markets are not equal, i.e., dbull 6=
dbear. In order to equalize dbull and dbear, we introduce a shifting to r(t), denoted by ∆r, such that
dbull(r

′(t)) = dbear(r
′(t)) with r′(t) = r(t) + ∆r. From this definition of ∆r, we derive (see Appendix S2)

∆r =
1

2
[dbear(r(t))− dbull(r(t))]. (12)

Thus we obtain ∆r = 0.067 for the S&P 500 Index and ∆r = −0.043 for the Shanghai Index. In
our model, we similarly compute the shifting to the time series R(t), which equalize the herding degree
D(t + 1) = |R′(t) − ∆R|/N in bull markets (R′(t) > 0) and bear markets (R′(t) < 0). Actually, one
may prove that the shifting to R(t) is equivalent to the shifting to R′(t) (see Appendix S3). If R′(t) is
replaced by R′′(t) = R′(t) + ∆R, D(t+ 1) turns into D(t+ 1) = |R′′(t)−∆R|/N = |R′(t)|/N , which is
symmetric for bull and bear markets. Therefore, ∆R is the shifting to R′(t), and it is just the shifting to
R(t).

The time series of returns in different real markets and in our model fluctuate at different levels. For
comparison, we normalize the returns with Eq. (8). Similarly, ∆R, the shifting to returns, should also
be normalized to ∆r. However, in simulating the stock markets with our model, the parameter we need
is ∆R. Therefore, we should first derive the relation of ∆R and ∆r. With the normalization of the time
series R(t), ∆R should be normalized to ∆r,

[∆R− 〈R(t)〉]/σ = ∆r, (13)

where 〈· · · 〉 represents the average over time t, and σ is the standard deviation of R(t). To determine
the relation of ∆R and ∆r, ∆R is set to be −4, −3, −2, −1, 0, 1, 2, 3, 4, respectively, and α is set to
be 1.0 to produce time series R(t). With R(t) simulated 100 times for each ∆R, we compute ∆r and
average the results. As displayed in Fig. 1, the relation of ∆R and ∆r is linear, and ∆R = 38.2∆r. For
α between 0.9 and 1.1, the results remain robust. Thus, we determine ∆R = 3 for the simulation of the
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S&P 500 Index and ∆R = −2 for the simulation of the Shanghai Index. Table 1 shows the values of ∆r
and ∆R, as well as the error of ∆r, for the Nikkei 225, FTSE 100, Hangseng and DAX indices. Due to
the fluctuation of the empirical data, the error of ∆r is about 10 percent. Since the sign of ∆r determines
that the simulation yields the leverage or anti-leverage effect, we perform Student’s t-test to analyze the
statistical significance of ∆r, and the corresponding p-value is listed in Table 1. A p-value less than 0.05
is considered statistically significant.

To further validate the methods for the determination of the key parameters and the simulations for
the leverage and anti-leverage effects, eight more indices are studied (see Appendix S4). The simulation
of each index correctly produces the leverage or anti-leverage effect.

4. Simulation
The number of agents in our simulations is 10000, i.e., N = 10000. With α and ∆R determined for

each index, our model produces the time series of returns R(t) in the following procedure. Initially, the
returns of the first 150 time steps are set to be 0. On day t+ 1, we calculate R′(t) according to Eq. (3),
then Ptrade(t+ 1) and D(t+ 1) according to Eq. (4) and Eq. (7), respectively. Next, we randomly divide
all agents into 1/D(t+ 1) groups. The agents in a group make a same trading decision (buy, sell or hold)
with the same probability (Pbuy, Psell or Phold). After all agents have made their decisions, we calculate
the return R(t+ 1) with Eq. (1) and Eq. (2). Repeating this procedure, we obtain the return time series
R(t). 20000 data points of R(t) are produced in each simulation, but the first 10000 data points are
abandoned for equilibration.

Results

To describe how past returns affect future volatilities, the return-volatility correlation function L(t) is
defined,

L(t) = [〈r(t′) · |r(t′ + t)|2〉 − L0]/Z, (14)

with Z = 〈|r(t′)|2〉2 and L0 = 〈r(t′)〉〈|r(t′)|2〉 [4]. Here 〈· · · 〉 represents the average over time t′.
As displayed in Fig. 2, L(t) calculated with the empirical data of the S&P 500 Index shows negative

values up to at least 15 days, and this is the well-known leverage effect [4,6,15]. On the other hand, L(t)
for the Shanghai Index remains positive for about 10 days. That is the so-called anti-leverage effect [6,19].
Fitting L(t) to an exponential form L(t) = c · exp(−t/τ), we obtains τ = 19 and 8 days for the leverage
and anti-leverage effects, respectively. Compared with the short correlating time of the returns, the
order of minutes [2, 3], both the leverage and anti-leverage effects are prominent. As the lowest-order
nonzero correlations of returns, the leverage and anti-leverage effects are theoretically crucial for the
understanding of the price dynamics [6, 15, 19, 20]. In practical application, these effects are important
for risk management and optimal portfolio choice [22, 23]. After the time series R(t) produced in our
model is normalized to r(t), we compute the return-volatility correlation function, and the result is in
agreement with that calculated from empirical data on amplitude and duration for both the S&P 500
and Shanghai indices, as shown in Fig. 2. This is the first time that the leverage and anti-leverage effects
are produced with a microscopic model.

For the Nikkei, FTSE 100, Hangseng and DAX indices, the volume data of early years are not available
to us. However, L(t) is computed from only price data. In order to reduce the fluctuation of L(t), we
collect the price data of a longer period, which are from 1984 to 2012 with 7092 data points for the
Nikkei 225 Index, from 1984 to 2012 with 7227 data points for the FTSE 100 Index, from 1988 to 2012
with 6181 data points for the Hangseng Index and from 1990 to 2012 with 5514 data points for the DAX
Index. As displayed in Fig. 3, L(t) for the simulations is in agreement with that for the corresponding
indices. Table 2 shows the values of c and ξ of the exponential fit L(t) = c · exp(ξt) for the six indices
and the corresponding simulations. Since c is obviously non-zero, the p-value of Student’s t-test is only
listed for ξ.



7

Our model also produces other features of the real markets, such as the long-term correlation of
volatilities and the fat-tail distribution of the returns. Here we take the S&P 500 and Shanghai indices
as examples. The auto-correlation function of volatilities is defined as

A(t) = [〈|r(t′)||r(t′ + t)|〉 − 〈|r(t′)|〉2]/A0, (15)

where A0 = 〈|r(t′)|2〉 − 〈|r(t′)|〉2 [19], and 〈· · · 〉 represents the average over time t′. As shown in Fig. 4,
A(t) for the simulations is consistent with that for the empirical data. The cumulative distributions
P (|r(t)| > x) of absolute returns are shown in Fig. 5, where the fat tail in the distribution of empirical
returns can be observed in that of the simulated returns as well.

By the definitions, both α and ∆r are not dependent on the number of agents (denoted by N) in the
model. However, the slope of the linear relation between ∆R and ∆r increases with N . Therefore, the
magnitude of ∆R becomes larger as N grows. For the simulation results, the amplitude of L(t) increases
with N , but gradually converges for larger N (see Appendix S5). For A(t) and P (|r(t)| > x), the cases
are similar.

Discussion

In our model, the crucial generation mechanisms of the return-volatility correlation are the agents’ asym-
metric trading and herding behaviors in bull and bear markets. Now we discuss how these two mecha-
nisms contribute to the leverage and anti-leverage effects, and which one is more significant. According
to Eq. (4) and α+ β = 2, Ptrade is symmetric about R′(t) = 0 if α = 1.0, and asymmetric if α 6= 1.0. On
the other hand, D(t + 1) in Eq. (7) is asymmetric about R′(t) = 0 if ∆R 6= 0. In our model, the S&P
500 and Shanghai indices are simulated with(α,∆R) = (1.0, 3) and (α,∆R) = (1.1,−2), respectively.
Therefore, Ptrade is symmetric in the simulation of the S&P 500 Index, but asymmetric in the simulation
of the Shanghai Index. D(t + 1) is asymmetric in the simulation of both the S&P 500 and Shanghai
indices. With other parts of the model remain unchanged, we consider the following controls: (a) Ptrade
is replaced by a symmetric one in the simulation of the Shanghai Index; (b) D(t + 1) is replaced by a
symmetric one in the simulation of both the S&P 500 and Shanghai indices; (c) both Ptrade and D(t+ 1)
are replaced by the symmetric ones in the simulation of the Shanghai Index.

The simulations are performed 100 times for average. We conclude that for the leverage and anti-
leverage effects, both the investors’ asymmetric trading and herding are essential generation mechanisms.
As displayed in Fig. 6, the anti-leverage effect is weakened significantly and the leverage effect disappears
after we replace the asymmetric D(t+ 1) with the symmetric one. On the other hand, the anti-leverage
effect recedes after the asymmetric Ptrade is replaced by the symmetric one. It is worth mentioning that
for the five stock markets exhibiting the leverage effect, the S&P 500, Nikkei 225, FTSE 100, Hangseng
and DAX, Ptrade is approximately symmetric, thus contributing very little to the leverage effect. The
investors’ asymmetric trading in the Shanghai market may result from the fact that the Shanghai market
is an emerging market. Investors are somewhat speculative, and rush for trading as the stock price
increases [6].

Conclusion
Based on investors’ individual and collective behaviors, we construct an agent-based model to inves-

tigate how the return-volatility correlation arises in stock markets. In our model, agents are linked with
each other and trade in groups. In particular, two novel mechanisms, investors’ asymmetric trading and
herding behaviors in bull and bear markets, are introduced. There are four parameters in our model, i.e.,
p, M , α and ∆R. We adopt p estimated in Ref. [41], and estimate the only tunable parameter M to be
150. α and ∆R, the key parameters, are induced by the asymmetries in trading and herding, respectively.
Specifically, we determine α from the ratio of the average trading volume when stock price is rising and
that when price is dropping, and ∆R from investors’ different herding degrees in bull and bear markets.
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We collect the daily price and volume data of six representative stock-market indices in the world,
including the S&P 500, Shanghai, Nikkei 225, FTSE 100, Hangseng and DAX indices. With α and ∆R
determined for these indices respectively, we obtain the corresponding leverage or anti-leverage effect from
the simulation, and the effect is in agreement with the empirical one on amplitude and duration. Other
features, such as the long-range auto-correlation of volatilities and the fat-tail distribution of returns,
are produced at the same time. Further, it is quantitatively demonstrated in our model that both the
investors’ asymmetric trading and herding are essential generation mechanisms for the leverage and anti-
leverage effects at the microscopic level. However, the investors’ trading is approximately symmetric for
the five stock markets exhibiting the leverage effect, thus contributing very little to the effect. These
two microscopic mechanisms and the methods for the determination of α and ∆R can also be applied to
other complex economic systems with similar asymmetries in individual and collective behaviors, e.g., to
futures markets, bank interest rates, foreign exchange rates and spot markets of non-ferrous metals.
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Figure Legends

Figure 1. The relation of ∆R and ∆r. With ∆R set to be −4, −3, −2, −1, 0, 1, 2, 3 and 4
respectively, time series R(t) is simulated 100 times for α = 1.0. The corresponding ∆r is computed and
averaged for each ∆R. This plot shows a linear relation of ∆R and ∆r, i.e., ∆R = 38.2∆r, and this
result remains robust for α between 0.9 and 1.1.
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Figure 2. The return-volatility correlation functions for the S&P 500 and Shanghai
indices, and for the corresponding simulations. The S&P 500 and Shanghai indices are simulated
with (α,∆R) = (1.0, 3) and (α,∆R) = (1.1,−2), respectively. Dashed lines show an exponential fit
L(t) = c · exp(−t/τ) with (c, τ) = (−0.36, 19) and (0.61, 8) for the S&P 500 Index and the Shanghai
Index.
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Figure 3. The return-volatility correlation functions for the four indices and the
corresponding simulations. The Nikkei 225, FTSE 100, Hangseng and DAX indices are simulated
with (α,∆R) = (1.0, 2), (1.0, 2), (1.0, 2) and (1.0, 1), respectively. Dashed lines show an exponential fit
L(t) = c · exp(−t/τ) with (c, τ) = (−0.25, 26) for the Nikkei 225 Index, (−0.33, 18) for the FTSE 100
Index, (−0.50, 10) for the Hangseng Index and (−0.20, 39) for the DAX Index.
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Figure 4. The auto-correlation functions of volatilities for the S&P 500 and Shanghai
indices, and for the corresponding simulations. For clarity, the curves for the S&P 500 Index
have been shifted down by a factor of 10.

Figure 5. The cumulative distributions of absolute returns for the S&P 500 and Shanghai
indices, and for the corresponding simulations. For clarity, the curves for the S&P 500 Index
have been shifted left by a factor of 8.5.
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Figure 6. The return-volatility correlation functions for the simulated results of the S&P
500 and Shanghai indices, and for those of the controls. The S&P 500 and Shanghai indices
exhibit the leverage and anti-leverage effects, respectively. For the leverage effect, we consider two
cases: D is asymmetric; D is symmetric. The latter is the control. For the anti-leverage effect, we
consider the following cases: both Ptrade and D are asymmetric; only D is asymmetric; only Ptrade is
asymmetric; both Ptrade and D are symmetric. The last three cases are controls. For each case, the
simulation is performed for 100 times, and the average L(t) is displayed.

Tables

Table 1. The values of V+/V−, dbull, dbear, α, ∆r and ∆R for the six indices. V+/V−, dbull and
dbear are determined from the historical data for each index. We calculate α from α+ β = 2 and
α/β = V+/V−, and ∆r from ∆r = 1

2 (dbear − dbull). Student’s t-test is performed to analyze the
statistical significance of ∆r. A p-value less than 0.05 is considered statistically significant. We compute
∆R from the linear relation between ∆r and ∆R for all these indices. As ∆R for the Shanghai Index is
negative, it is rounded down to the nearest integer, while ∆R for other indices are positive, and each of
them is rounded up to the nearest integer.

Index V+/V− dbull dbear α ∆r p-value ∆R
S&P 500 (1950-2012) 1.03 0.993 1.127 1.01± 0.01 0.067± 0.007 6.7× 10−4 3
Shanghai (1991-2006) 1.21 0.533 0.447 1.09± 0.01 −0.043± 0.005 1.0× 10−3 −2

Nikkei 225 (2003-2012) 1.01 0.729 0.807 1.01± 0.01 0.039± 0.005 1.5× 10−3 2
FTSE 100 (2004-2012) 0.98 0.673 0.729 0.99± 0.01 0.028± 0.003 7.3× 10−4 2
Hangseng (2001-2012) 1.04 0.966 1.029 1.02± 0.02 0.032± 0.003 4.4× 10−4 2

DAX (2008-2012) 0.96 0.797 0.822 0.98± 0.02 0.013± 0.002 2.9× 10−3 1
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Table 2. The values of c and ξ of the exponential fit L(t) = c · exp(ξt) for the six indices and
the corresponding simulations. Student’s t-test is performed to analyze the statistical significance
of ξ. A p-value less than 0.05 is considered statistically significant.

c ξ p-value
S&P 500 −0.36± 0.02 −0.053± 0.005 4.5× 10−4

simulation −0.30± 0.01 −0.032± 0.001 5.7× 10−6

Shanghai 0.61± 0.12 −0.133± 0.014 6.9× 10−4

simulation 0.30± 0.02 −0.066± 0.004 7.9× 10−5

Nikkei 225 −0.25± 0.01 −0.038± 0.004 6.9× 10−4

simulation −0.27± 0.01 −0.042± 0.001 1.9× 10−6

FTSE 100 −0.33± 0.03 −0.055± 0.007 1.4× 10−3

simulation −0.26± 0.01 −0.036± 0.001 3.6× 10−6

Hangseng −0.50± 0.06 −0.098± 0.012 1.2× 10−3

simulation −0.22± 0.01 −0.027± 0.001 1.1× 10−5

DAX −0.20± 0.01 −0.026± 0.002 2.0× 10−4

Simulation −0.22± 0.01 −0.031± 0.001 6.5× 10−6


